Abstract

Quality control in advanced manufacturing requires automated and high-accuracy large-scale 3D measurement. This paper proposes a high-accuracy, low-cost 3D scanning system by integrating industrial robot with precise linear rail and laser sensor. The measuring principle and system construction of the integrated system are introduced in detail. A mathematical model is established for mapping the change of the laser sensor frame while it scans along the linear rail and a sphere-based algorithm for rail orientation calibration is introduced. Subsequently, taking the robot positioning error into consideration, an enhanced hand–eye calibration method is proposed to determine the relationship between robot end-effector and rail scanning frame. Validation experiments were performed, a maximum distance error of 0.071mm was detected within the rail range and a mean/maximum distance error of 0.309/0.604mm was detected in the robot volume. A large-scale scanning instance also shows that integrated robotic scanning system features high-efficiency and high-accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.