Abstract

Current wearables that collect heart rate and acceleration were not designed for children and/or do not allow access to raw signals, making them fundamentally unverifiable. This study describes the creation and calibration of an open-source multichannel platform (PATCH) designed to measure heart rate and acceleration in children ages 3-8 yr. Children (N = 63; mean age, 6.3 yr) participated in a 45-min protocol ranging in intensities from sedentary to vigorous activity. Actiheart-5 was used as a comparison measure. We calculated mean bias, mean absolute error (MAE) mean absolute percent error (MA%E), Pearson correlations, and Lin's concordance correlation coefficient (CCC). Mean bias between PATCH and Actiheart heart rate was 2.26 bpm, MAE was 6.67 bpm, and M%E was 5.99%. The correlation between PATCH and Actiheart heart rate was 0.89, and CCC was 0.88. For acceleration, mean bias was 1.16 mg and MAE was 12.24 mg. The correlation between PATCH and Actiheart was 0.96, and CCC was 0.95. The PATCH demonstrated clinically acceptable accuracies to measure heart rate and acceleration compared with a research-grade device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.