Abstract

Cleaning a quartz crystal microbalance (QCM) plays a crucial role in the regeneration of its biosensors for reuse. Imprecise removal of a receptor layer from a transducer’s surface can lead to unsteady operation during measurements. This article compares three approaches to regeneration of the piezoelectric transducers using the electrochemical, oxygen plasma and Piranha solution methods. Optimization of the cleaning method allowed for evaluation of the influence of cleaning on the surface of regenerated biosensors. The effectiveness of cleaning the QCM transducers with a receptor layer in the form of a peptide with the KLLFDSLTDLKKKMSEC-NH2 sequence was described. Preliminary cleaning was tested for new electrodes to check the potential impact of the cleaning on deposition and the transducer’s operation parameters. The effectiveness of the cleaning was assessed via the measurement of a resonant frequency of the QCM transducers. Based on changes in the resonant frequency and the Sauerbrey equation, it was possible to evaluate the changes in mass adsorption on the transducer’s surface. Moreover, the morphology of the QCM transducer’s surface subjected to the selected cleaning techniques was presented with AFM imaging. The presented results confirm that each method is suitable for peptide-based biosensors cleaning. However, the most invasive seems to be the Piranha method, with the greatest decrease in performance after regeneration cycles (25% after three cycles). The presented techniques were evaluated for their efficiency with respect to a selected volatile compound, which in the future should allow reuse of the biosensors in particular applications, contributing to cost reduction and extension of the sensors’ lifetime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.