Abstract

Abstract Hybrid solar-based integrated systems represent a viable solution for countries with abundant solar radiation, as they provide energy needs in an environmentally friendly way, offering a sustainable and economically advantageous energy solution that utilizes a free source of energy. Therefore, this research offers a thermodynamic evaluation of a novel integrated system driven by solar energy that aims to produce power, heating and freshwater. The integrated system consists of a parabolic trough collector that uses CO2 as its working fluid and implements the supercritical carbon dioxide cycle to generate power and heating. The integrated system also includes an adsorption desalination system with heat recovery between the condenser and evaporator, which employs a cutting-edge material called an aluminium fumarate metal–organic framework to produce fresh water. For the modelling of a novel system, an engineering equation solver, which is considered a reliable tool for thermodynamic investigations, is employed. The effectiveness of an integrated system is evaluated using a mathematical model and different varying parameters are examined to ascertain their influence on thermal and exergy efficiency, specific daily water production and gained output ratio. The results revealed that the parabolic trough collector achieved a thermal efficiency of 67.2% and an exergy efficiency of 41.2% under certain conditions. Additionally, the thermal efficiencies for electrical and heating were obtained 24.68% and 9.85%, respectively. Finally, the specific daily water production was calculated, showing promising results and an increase from 7.1 to 12.5 m3/ton/day, while the gain output ratio increased from 0.395 to 0.62 when the temperature of hot water increased from 65°C to 85°C, under the selected conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call