Abstract

BackgroundThe COVID-19 pandemic has continued to pose a major global public health risk. The importance of public health surveillance systems to monitor the spread and impact of COVID-19 has been well demonstrated. The purpose of this study was to describe the development and effectiveness of a real-time public health syndromic surveillance system (ACES Pandemic Tracker) as an early warning system and to provide situational awareness in response to the COVID-19 pandemic in Ontario, Canada.MethodsWe used hospital admissions data from the Acute Care Enhanced Surveillance (ACES) system to collect data on pre-defined groupings of symptoms (syndromes of interest; SOI) that may be related to COVID-19 from 131 hospitals across Ontario. To evaluate which SOI for suspected COVID-19 admissions were best correlated with laboratory confirmed admissions, laboratory confirmed COVID-19 hospital admissions data were collected from the Ontario Ministry of Health. Correlations and time-series lag analysis between suspected and confirmed COVID-19 hospital admissions were calculated. Data used for analyses covered the period between March 1, 2020 and September 21, 2020.ResultsBetween March 1, 2020 and September 21, 2020, ACES Pandemic Tracker identified 22,075 suspected COVID-19 hospital admissions (150 per 100,000 population) in Ontario. After correlation analysis, we found laboratory-confirmed hospital admissions for COVID-19 were strongly and significantly correlated with suspected COVID-19 hospital admissions when SOI were included (Spearman’s rho = 0.617) and suspected COVID-19 admissions when SOI were excluded (Spearman’s rho = 0.867). Weak to moderate significant correlations were found among individual SOI. Laboratory confirmed COVID-19 hospital admissions lagged in reporting by 3 days compared with suspected COVID-19 admissions when SOI were excluded.ConclusionsOur results demonstrate the utility of a hospital admissions syndromic surveillance system to monitor and identify potential surges in severe COVID-19 infection within the community in a timely manner and provide situational awareness to inform preventive and preparatory health interventions.

Highlights

  • The COVID-19 pandemic has continued to pose a major global public health risk

  • The natural language processing (NLP) algorithms were developed by a team of content experts that manually classified a large dataset of patient triage records into syndromes based on their chief complaint

  • The algorithms do not rely on keyword searches, but rather probabilistic decisions based on attaching learned weighting values to each word, part of a word, or phrase in the chief complaint

Read more

Summary

Introduction

The importance of public health surveillance systems to monitor the spread and impact of COVID-19 has been well demonstrated. The purpose of this study was to describe the development and effectiveness of a real-time public health syndromic surveillance system (ACES Pandemic Tracker) as an early warning system and to provide situational awareness in response to the COVID-19 pandemic in Ontario, Canada. The importance of public health surveillance systems to monitor the spread and impact of disease within the population has been well demonstrated during the COVID-19 pandemic [3,4,5,6]. Public health surveillance systems have the capability to serve as early warning systems and provide situational awareness during public health emergencies, including communicable disease outbreaks, natural disasters and bioterrorism, among others [7, 8]. Public health surveillance can guide healthrelated policy development, including disease prevention and risk mitigation strategies, and contribute to epidemiologic understanding of various communicable and noncommunicable diseases [7, 8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call