Abstract

The quasi-potential transformation, based on the Kirchhoff transformation, reduces the equations governing mass-transfer in a steady-state, nonconvective electrolytic system into two independent parts. The geometry-specific part involves the solution of Laplace's equation subject to the relevant boundary conditions. The system-specific part involves the solution of a set of coupled first-order, nonlinear, ordinary differential equations. We develop a theoretical basis for the quasi-potential transformation using potential theory. The major assumption on which the quasi-potential transformation is based is that the concentrations can be written as single-valued functions of the electrostatic potential. We see how the system-specific part of the calculation is developed. Boundary conditions are outlined, and the geometry-specific calculations for the disk and hemisphere electrodes are developed. We combine the system-specific calculations for the binary and acidic copper sulfate solutions with these geometry-specific calculations to obtain complete concentration profiles, potential distributions, and current density distributions for these systems. We also investigate the effect of migration on limiting currents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call