Abstract

Microwave-assisted extraction (MAE) has emerged as an efficient extraction technique for various kinds of biological samples due to its low usage of extraction solvents and shorter extraction time. This review will focus on the recent developments and advantages of incorporating MAE in sample preparation protocols for the analysis of small molecules in plant, food and clinical samples in recent years. The operating principles of this technique and the key parameters influencing its extraction efficiency, including the nature of solvent, temperature, power and extraction time and their limitations are first mentioned. This is followed by a discussion on the advantages of applying MAE to extract organic contaminants in food for routine food safety analysis and active ingredients recovery. The successful application of MAE technique to recover bioactive compounds from plants in drug discovery studies and quality control purposes is then described. Additionally, the feasibility of using green solvents such as water, micelle and ionic liquids with MAE for plant metabolite profiling studies is evaluated and the associated challenges discussed. Finally, the application of MAE in clinical samples is highlighted. The use of MAE in this field is currently limited to the targeted detection of small molecules in human samples, due to a lack of knowledge of its effects on thermally labile metabolites. Consequently, the need for additional studies on how MAE impacts the recoveries of different metabolite classes in mammalian samples is discussed. The outcome of these studies can potentially broaden MAE applications in the clinical field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.