Abstract
Customer input has increased as digital manufacturing and smart factories advance. However, standard analysis methods struggle to turn this feedback into useful insights. This research study examined the use of machine learning (ML) sentiment analysis algorithms to improve digital manufacturing customer feedback interpretation. Machine learning, sentiment analysis, and digital industrialization theories underpin the research. Sentiment analysis may reveal nuanced consumer feedback insights that traditional methods miss, according to customer experience management and complex data analytics theories. A specially constructed ML system for sentiment analysis was used to real-world customer feedback data from numerous digital manufacturing enterprises in a case study. This method classified feedback sentiment using natural language processing. The program picked up small changes in client emotions that previous methods missed. These findings imply that machine learning-based sentiment analysis improves digital manufacturing customer feedback interpretation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.