Abstract

State-of-the-art smart sensor technology enables deployment of dense arrays of sensors, which is critical for structural health monitoring (SHM) of complicated and large-scale civil structures. Despite recent successful implementation of various wireless smart sensor networks (WSSNs) for full-scale SHM, the low-cost micro-electro-mechanical systems (MEMS) sensors commonly used in smart sensors cannot readily measure low-level ambient vibrations because of their relatively low resolution. Combined use of conventional wired high- sensitivity sensors with low-cost wireless smart sensors has been shown to provide improved spectral estimates of response that can lead to improved experimental modal analysis. However, such a heterogeneous network of wired and wireless sensors requires central collection of an enormous amount of raw data and off-network processing to achieveglobal time synchronization; consequently, many of the advantages of WSSNs for SHM are lost. In this paper, the development of a new high-sensitivity accelerometer board (SHM-H) for the Imote2 wireless smart sensor (WSS) platform is presented. The use of a small number of these high-sensitivity WSSs, composed of the SHM-H and Imote2, as reference sensors in the Natural Excitation Technique—based decentralized WSSN strategy is explored and is shown to provide a cost- effective means of improving modal feature extraction in the decentralized WSSN for SHM. DOI: 10.1061/(ASCE)EM.1943-7889 .0000352. © 2012 American Society of Civil Engineers. CE Database subject headings: Structural health monitoring; Probe instruments; Identification; Stochastic models. Author keywords: Structural health monitoring; Wireless smart sensor network; High-sensitivity sensor; System identification; Decentralized sensor network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call