Abstract

Stratum corneum (SC), the outermost layer of the skin, contains large variety of lipids, endowing them with the amphiphilic properties, needed to fulfil their key role in skin's barrier function. The individual role of lipid types in the barrier function is difficult to understand due to the immense heterogeneity and complexity of the lipid's organization within the SC. The lipid organization is being explored using both computational (molecular dynamics simulations) and experimental (neutron diffraction) techniques. Even though atomistic simulations provide unprecedented atomic level details, the major limitation is time and length scale that can be achieved with decent computational facility. Alternatively, coarse-grain (CG) models are currently being used to capture physics at bigger time and length scale without losing essential underlined structural information. In this study, a CG model of α-hydroxy phytosphingosines (CER[AP]) is developed based on philosophy of MARTINI force field. At first, the model is validated with various atomistic simulations and available experimental data. Later on, the model's compatibility with other major skin lipids, cholesterol, and free fatty acid (palmitic acid) is checked by simulating a mixture of lipid multilayer in presence and absence of water. The developed model of CER[AP] is able to predict key structural properties within the acceptable error limits. The phenomena of ceramide conformation transformation, cholesterol flip-flop, and specificity of lipid arrangement within the multilayered systems is observed during the simulation. This signifies the importance of model in capturing higher order structural transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.