Abstract

An ab initio potential for the methane-water bimolecular system has been developed for use in modeling methane hydrates and in order to evaluate currently used statistical thermodynamic models. In this paper, an introduction to gas hydrates is first given, and the problem with the Lennard-Jones and Devonshire (LJD) approximation, typically used for modeling hydrates, is described. Second, the methodologies for generating the ab initio potential energy surface are described and results discussed. Third, computed phase equilibrium data for methane hydrates using the obtained ab initio potential are presented and compared to experimental data. Finally, results regarding the issue of the reference state for the statistical thermodynamic model, including analysis and determination of reference state properties via ab initio calculations, are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.