Abstract

Members of Dysgonomonas are Gram-stain-negative, non-motile, facultatively anaerobic coccobacilli originally described in relation to their isolation from stool and wounds of human patients (CDC group DF-3). More recently, Dysgonomonas have been found to be widely distributed in terrestrial environments and are particularly enriched in insect systems. Their prevalence in xylophagous insects such as termites and wood-feeding cockroaches, as well as in soil-fed microbial fuel cells, elicit interest in lignocellulose degradation and biofuel production, respectively. Their occurrence in mosquito and fruit fly have implications relating to symbiosis, host immunology and developmental biology. Additionally, their presence in termite, mosquito and nematode present novel opportunities for pest and vector control. Currently, the absolute growth requirements of Dysgonomonas are unknown, and they are commonly cultured under anaerobic conditions on complex media containing blood, peptones, tryptones, and yeast, plant or meat extracts. Restrictive and undefined culturing conditions preclude physiological and genetic studies, and thus further understanding of their metabolic potential. Here we describe the requirements for growth of termite-derived Dysgonomonas isolates and create parallel complex, defined and minimal media that permit vigorous and reliable aerobic growth. Furthermore, we show that these media can be used to easily enrich for Dysgonomonas isolates from densely-colonized and microbially-diverse environmental samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call