Abstract
Chronic obstructive pulmonary disease (COPD) is one of the top three causes of death worldwide, characterized by emphysema and bronchitis. Airway measurements reflect the severity of bronchitis and other airway-related diseases. Airway structures can be objectively evaluated with quantitative computed tomography (CT). The accuracy of such quantifications is limited by the spatial resolution and image noise characteristics of the imaging system and can be potentially improved with the emerging photon-counting CT (PCCT) technology. This study evaluated the quantitative performance of PCCT against energy-integrating CT (EICT) systems for airway measurements, and further identified optimum CT imaging parameters for such quantifications. The study was performed using a novel virtual imaging framework by developing the first library of virtual patients with bronchitis. These virtual patients were developed based on CT images of confirmed COPD patients with varied bronchitis severity. The human models were virtually imaged at 6.3 and 12.6 mGy dose levels using a scanner-specific simulator (DukeSim), synthesizing clinical PCCT and EICT scanners (NAEOTOM Alpha, FLASH, Siemens). The projections were reconstructed with two algorithms and kernels at different matrix sizes and slice thicknesses. The CT images were used to quantify clinically relevant airway measurements ("Pi10" and "WA%") and compared against their ground truth values. Compared to EICT, PCCT provided more accurate Pi10 and WA% measurements by 63.1% and 68.2%, respectively. For both technologies, sharper kernels and larger matrix sizes led to more reliable bronchitis quantifications. This study highlights the potential advantages of PCCT against EICT in characterizing bronchitis utilizing a virtual imaging platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of SPIE--the International Society for Optical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.