Abstract

HONO (nitrous acid) is a crucial precursor for tropospheric OH radicals, and its sources are not well understood. In the past decade, soil was proven to be a potential source for HONO. However, more field measurements of soil HONO emission flux are needed to explore the mechanism and its impact on regional air quality. Here, we developed a system based on twin open-top chambers (OTCs) and wet chemical methods to measure HONO emission flux from agricultural soil in the North China Plain (NCP). The performance of the OTC system was tested under laboratory and field measurement conditions. The results showed that the system could reflect the strength (>90%) and variation of gas emission with an average residence time of 4–5 min. The greenhouse effect and chemical reaction interference in the chamber was proven to have no significant influence on the HONO flux measurement. Field measurement revealed that agricultural soil before fertilization was an important source of HONO. The emission flux showed radiation-dependent or temperature-dependent variation, with a peak of 3.21 ng m−2 s−1 at noontime that could account for approximately 67 pptv h−1 of the missing HONO source under an assumed mixing layer height of 300 m. Fertilization substantially accelerated HONO emission, which was rationally attributed to biological processes including nitrification. Considering the high fertilization rate in the NCP and other similar regions in China, HONO emission from agricultural soil likely has enormous impact on regional photochemistry and air quality, suggesting that more research should be conducted on this aspect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.