Abstract

Glucose gradients generated by an artificial source and beta-cells were measured using an enzyme-based glucose microsensor, 8-microm tip diameter, as a self-referencing electrode. The technique is based on a difference measurement between two locations in a gradient and thus allows us to obtain real-time flux values with minimal impact of sensor drift or noise. Flux values were derived by incorporation of the measured differential current into Fick's first equation. In an artificial glucose gradient, a flux detection limit of 8.2 +/- 0.4 pmol.cm(-2).s(-1) (mean +/- SEM, n = 7) with a sensor sensitivity of 7.0 +/- 0.4 pA/ mM (mean +/- SEM, n = 16) was demonstrated. Under biological conditions, the glucose sensor showed no oxygen dependence with 5 mM glucose in the bulk medium. The addition of catalase to the bulk medium was shown to ameliorate surface-dependent flux distortion close to specimens, suggesting an underlying local accumulation of hydrogen peroxide. Glucose flux from beta-cell clusters, measured in the presence of 5 mM glucose, was 61.7 +/- 9.5 fmol.nL(-1).s(-1) (mean +/- SEM, n = 9) and could be pharmacologically modulated. Glucose consumption in response to FCCP (1 microM) transiently increased, subsequently decreasing to below basal by 93 +/- 16 and 56 +/- 6%, respectively (mean +/- SEM, n = 5). Consumption was decreased after the application of 10 microM rotenone by 74 +/- 5% (mean +/- SEM, n = 4). These results demonstrate that an enzyme-based amperometric microsensor can be applied in the self-referencing mode. Further, in obtaining glucose flux measurements from small clusters of cells, these are the first recordings of the real-time dynamic of glucose movements in a biological microenvironment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.