Abstract

Abstract To improve the prediction accuracy of profile loss at low Reynolds number, a typical low-pressure turbine cascade T106D-EIZ was selected to numerically investigate the effect of Reynolds number on turbine cascade flow. A detailed analysis of profile loss was performed and a profile loss model considering the low-Re effect was developed. Results showed that the incidence angle has a great effect on the inlet and outlet Mach number at low Reynolds number, and the variation of inlet and outlet Mach number further affects the blade profile loss. A correction factor was introduced to consider the effect of incidence angle and Mach number on the profile loss. The profile loss coefficient and stalling incidence angle were both extended to lower Reynolds number based on the numerical results. A Smart Through Flow Analysis Program (STFAP) was developed using the finite volume method to solve the circumferentially averaged Euler equations of S2 surface. Aerodynamic performance of E3 5-stage low-pressure turbine was predicted by STFAP coupled with low-Re profile loss model. Compared with K-O model, the prediction accuracy of efficiency of low-pressure turbine last stage is improved by nearly 1.1 percentage points when the 5-stage low-pressure turbine is in a low Reynolds number state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call