Abstract

Hydrogen sulfide{Wang, 2018 #4}{Wang, 2018 #4}{Zhong, 2020 #9} (H2S) is a poisonous and harmful gas molecule. Certain concentrations of H2S{Liu, 2021 #8} can irritate the eyes, respiratory system, and central nervous system of human beings. Therefore, it was an urgent need for highly selective, anti-interference, and sensitive detection technology for hydrogen sulfide. Herein, a novel “turn-on” fluorescent probe 1-(2-(6,6-dimethylbicyclo[3.1.1]heptyl-2-ene-2-yl))-9-(4-(dimethylaminophenyl))non-1,6,8-triene-3,5-dione boron difluoride complex (MCBF) was designed and synthesized for detecting H2S sensitively. MCBF displayed a remarkable fluorescence enhancement response to H2S with a large Stokes shift of 220 nm. The sensitive detection of MCBF towards H2S owned good selectivity, fast response time (6 min), excellent photostability, and low detection limit (0.44 μM). The sensing mechanism of MCBF towards H2S was well confirmed by HRMS analysis, 1H NMR titration, and density functional theory (DFT) calculations. What’s more, probe MCBF was successfully applied to detect the contained H2S in red wine, which showed the potential practicability of MCBF in real samples analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call