Abstract

AbstractThis article presents an index of similarity that has application in monitoring relative changes of complex microbial communities for the purpose of understanding the impact of community instability in biological wastewater treatment systems. Gas chromatographic data quantifying microbial fatty acid esters extracted from biosolids samples can be used to infer the occurrence of changes in mixed culture community structure. One approach to rapidly assess the relative dissimilarity between samples is to calculate a similarity index scaled between 0 and 1. The many arbitrary scales that are associated with the available calculation methods for similarity indices limits the extent of application. Therefore, a specialized index of similarity was derived from consideration of the measurement errors associated with the chromatographic data. The resultant calculation method provides a clear mechanism for calibrating the sensitivity of the similarity index, such that inherent measurement variability is accommodated and standardization of scaling is achieved. The similarity index sensitivity was calibrated with respect to an effective gas chromatographic peak coefficient of variation, and this calibration was particularly important for facilitating comparisons made between different systems or experiments. The proposed index of similarity was tested with data acquired from a recently completed study of contaminant removal from pulp mill wastewater. The results suggest that this index can be used as a screening tool to rapidly process microbial fatty acid (MFA) compositional data, with the objective of making preliminary identification of underlying trends in (MFA) community structure, over time or between experimental conditions. Copyright © 2002 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.