Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that frequently causes health care-associated infections (HAIs). Due to its metabolic diversity and ability to form biofilms, this Gram-negative nonfermenting bacterium can persist in the health care environment, which can lead to prolonged HAI outbreaks. We describe the creation of a core genome multilocus sequence typing (cgMLST) scheme to provide a stable platform for the rapid comparison of P. aeruginosa isolates using whole-genome sequencing (WGS) data. We used a diverse set of 58 complete P. aeruginosa genomes to curate a set of 4,440 core genes found in each isolate, representing ∼64% of the average genome size. We then expanded the alleles for each gene using 1,991 contig-level genome sequences. The scheme was used to analyze genomes from four historical HAI outbreaks to compare the phylogenies generated using cgMLST to those of other means (traditional MLST, pulsed-field gel electrophoresis [PFGE], and single-nucleotide variant [SNV] analysis). The cgMLST scheme provides sufficient resolution for analyzing individual outbreaks, as well as the stability for comparisons across a variety of isolates encountered in surveillance studies, making it a valuable tool for the rapid analysis of P. aeruginosa genomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.