Abstract

The nonlinear evolution of three-dimensional reconnection instabilities are studied in a current sheet where many resonant surfaces are simultaneously present at different locations of the simulation domain. The nonlinear evolution produces the development of anisotropic magnetohydrodynamic turbulence. The development of the energy spectrum is followed until the energy is transported to the dissipative length scale and the anisotropy of the spectrum is analyzed. The energy cascade is affected by the Alfvén effect and it takes place mainly in the direction perpendicular to the local average magnetic field. Anisotropy is also affected by propagation of perturbations across the main magnetic field, due to the growth of a transverse component related to reconnection. The direction of anisotropy varies with the position in space. The spectral index is different both from what is found in homogeneous isotropic turbulence and from the values predicted for magnetohydrodynamic turbulence with a uniform large-scale magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call