Abstract
Herpesviruses are associated with disease in many penguin species. Herpesvirus-associated lesions can cause significant morbidity and mortality in penguins and have been identified in African penguins (Spheniscus demersus), Humboldt penguins (Spheniscus humboldti), and a little blue penguin (Eudyptula minor) infected with spheniscid alphaherpesvirus 1 (SpAHV1). Further investigation is necessary to understand the impact of herpesviruses on penguin health, but there are no rapid, sensitive, and specific methods for detecting and quantifying herpesviral load. We therefore developed a quantitative real-time PCR (qPCR) assay for the detection of SpAHV1 in penguins. TaqMan primer-probes targeting the DNA polymerase gene were designed using a commercial software program. Inter- and intra-assay variability, dynamic range, limit of detection, and analytical specificity were assessed. We used our assay to analyze previously collected field samples from Punta San Juan, Peru, in which conventional consensus PCR had detected one SpAHV1-positive penguin sample. Our qPCR assay was highly specific for SpAHV1. It had a dynamic range of 107-101 target copies per reaction and performed with high efficiency and low intra- and inter-assay variability. Reaction efficiency was not impacted by penguin DNA from SpAHV1-negative tracheal swabs. We detected an additional field sample as positive with our newly developed qPCR assay, and although this likely represents detection of another infected penguin, the true disease status of this population is currently uncharacterized given that no gold-standard test exists for SpAHV1. Our qPCR assay may provide a valuable tool in the surveillance and characterization of SpAHV1 in penguins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.