Abstract
Spallation sources incorporating solid targets may be driven to utilize liquid metal coolants by neutronics or temperature concerns. If tungsten is chosen as the target material, it will require cladding given its poor performance under irradiation. One option to meet this need are ferritic/martensitic stainless steel alloys. This study investigates possible diffusion bonding techniques suitable to clad tungsten targets with HT9, a high chromium stainless steel familiar to the nuclear industry. A test bonding matrix was performed to identify bonding conditions and process parameters suitable for the three material systems of interest (HT9/Ta, HT9/W, and HT9/HT9). Temperatures of 900 and 1060°C were investigated along with bonding pressures of 7 and 70MPa. A nominal soak time of 3h was used for all tests. Three interlayers were investigated: pure nickel, Ni–6P, and vanadium. Finally, different surface preparation techniques for the tungsten were explored in order to gage their effect on the bond quality. Following joining, the bonds were characterized using an array of microscopy and micromechanical techniques to determine the resulting interface character. The nickel and NiP coatings were found to stabilize austenite at the HT9 surface during bonding, while the vanadium remained generally inert given good solubility in each of the three systems. Intermetallic formation is also a significant concern at elevated bonding temperatures as FeTa, FeW, NiTa, and NiW each rapidly form during interdiffusion. Multiple failures were observed through crack propagation parallel to the interface along the intermetallic phases. Differing contraction rates among the base materials also resulted in brittle fracture within the tungsten during cooling from bonding temperatures. Bonding performed at 900°C under 70MPa for 3h with the inclusion of a vanadium interlayer was found to be superior of the conditions explored in this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.