Abstract

In the current study, a lyotropic cholesteric liquid crystal (ChLC) based sensor for the identification of vapors of polar (toluene and phenol) and apolar (1,2 dicholoropropane) toxic gases was investigated. The lyotropic ChLC sample including cholesteryl oleyl carbonate, cholesteryl pelargonate, and cholesteryl benzoate was supported on the chemically modified glass surfaces as an optical sensor for the detecting of these toxic gases vapors. The glass surfaces were modified by coating Dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMOAP). The optical signal generated by the incorporation of different toxic gases vapors in the lyotropic ChLC layers which disturbs the pitch length. These toxic gases were evaporated at different temperatures and the exposure time was differentiated. Increasing solvent evaporation temperature lead a shift in the wavelength maximum to smaller wavelengths which can be observed by a naked eye.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.