Abstract

Sexually transmitted diseases easily spread among sexually active people and often have no symptoms. Rapid and accurate method for detecting these infections are necessary in early stages. The traditional detection methods of them are difficult and time-consuming. In this study, multiplex real time PCR was optimized for rapid identification of Chlamydia trachomatis and Mycoplasma hominis in a single tube and was performed with our designed primers. The sensitivity test was carried out to designed primers with diluted genomic DNA. To defined the specificity, non STD bacteria were used as DNA template. This study indicated that the developed multiplex real time PCR can be an effective alternative procedure to the conventional methods for rapid and accurate identification of C Chlamydia trachomatis and Mycoplasma hominis. Multiplex real-time PCR Results of them were checked with melting curves. The sensitivity of our designed primer by multiplex real time PCR for Chlamydia trachomatis and Mycoplasma hominis were 4.78×1010 and 8.35×1010 , respectively, Which the primers did not amplify any product from a non-STD species. Multiplex real time PCR by our new primers and analysis of melting curves were successfully usable for rapid and accurate detection of Chlamydia trachomatis and Mycoplasma hominis. This assay instead of traditional culture method, has considerable potential to be rapid, accurate and highly sensitive molecular diagnostic tool for simultaneous and direct detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.