Abstract
We have developed accelerator mass spectrometry (AMS) measurement techniques for ultra small-size samples ranging from 0.01 to 0.10 mg C with a new type of MC-SNICS ion source system. We can generate 4 times higher ion beam current intensity for ultra-small samples by optimization of graphite position in the target holder with the new ionizer geometry. CO2 gas graphitized in the newly developed vacuum line is pressed to a depth of 1.5 mm from the front of the target holder. This is much deeper than the previous position at 0.35 mm depth. We measured 12C4+ beam currents generated by small standards and ion beam currents (15–30 μA) from the targets in optimized position, lasting 20 min for 0.01 mg C and 65 min for 0.10 mg C. We observed that the measured 14C/12C ratios are unaffected by the difference of ion beam currents ranging from 5 to 30 μA, enabling measurement of ultra-small samples with high precision. Examination of the background samples revealed 1.1 μg of modern and 1 μg of dead carbon contaminations during target graphite preparation. We make corrections for the contamination from both the modern and background components. Reduction of the contamination is necessary for conducting more accurate measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.