Abstract

In the primary and final designs of projects related to rock mechanics and engineering geology, one of the key parameters that needs to be taken into account is the intact rock elastic modulus (E). To measure this parameter in a laboratory setting, core samples with high-quality and costly tools are required, which also makes for a time-consuming process. The aim of this study is to assess the effectiveness of two meta-heuristic-driven approaches to predicting E. The models proposed in this paper, which are based on integrated expert systems, hybridize the adaptive neuro-fuzzy inference system (ANFIS) with two optimization algorithms, i.e., the differential evolution (DE) and the firefly algorithm (FA). The performance quality of both ANFIS-DE and ANFIS-FA models was then evaluated by comparing them with ANFIS and neural network (NN) models. The ANFIS-DE and ANFIS-FA models were formed on the basis of the data collected from the Azad and Bakhtiari dam sites in Iran. After applying several statistical criteria, such as root mean square error (RMSE), the ANFIS-FA model was found superior to the ANFIS-DE, ANFIS, and NN models in terms of predicting the E value. Additionally, the sensitivity analysis results showed that the P-wave velocity further influenced E compared with the other independent variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.