Abstract
ABSTRACTExisting methods of estimating travel time from GPS data are not able to simultaneously take account of the issues related to uncertainties associated with GPS and spatial road network data. Moreover, they typically depend upon high-frequency data sources from specialist data providers, which can be expensive and are not always readily available. The study reported here therefore sought to better estimate travel time using “readily available” vehicle trajectory data from moving sensors such as buses, taxis, and logistical vehicles equipped with GPS in “near” real time. To do this, accurate locations of vehicles on a link were first map-matched to reduce the positioning errors associated with GPS and digital road maps. Two mathematical methods were then developed to estimate link travel times from map-matched GPS fixes, vehicle speeds, and network connectivity information with a special focus on sampling frequencies, vehicle penetration rates, and time window lengths. Global positioning system (GPS) data from Interstate I-880 (California) for a total of 73 vehicles over 6 h were obtained from the University of California Berkeley's Mobile Century Project, and these were used to evaluate several travel time estimation methods, the results of which were then validated against reference travel time data collected from high resolution video cameras. The results indicate that vehicle penetration rates, data sampling frequencies, vehicle coverage on the links, and time window lengths all influence the accuracy of link travel time estimation. The performance was found to be best in the 5-min time window length and for a GPS sampling frequency of 60 s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.