Abstract

Both the role and the interacting partners of an RNA molecule can change depending on its tertiary structure. Consequently, it is important to be able to accurately predict the complete folding pathway of an RNA molecule. The hepatitis delta virus (HDV) ribozyme is a small catalytic RNA with the greatest number of folding intermediates making it the model of choice with which to address this problem. The tertiary structures of the known putative intermediates along the folding pathway of the HDV ribozyme were predicted using the Macromolecular Conformations Symbolic programming (MC-Sym) software. The structures obtained by this method received physical support from Selective 2'-Hydroxyl Acylation analyzed by Primer Extension (SHAPE). The analysis of these structures elucidated several features of the HDV ribozyme. In addition, this report represents an application for MC-Sym that permits progression one step further toward the computer prediction of an RNA molecule-folding pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.