Abstract
BackgroundOsteoarthritis (OA) is a common cause of disability among the elderly, profoundly affecting quality of life. This study aims to leverage bioinformatics and machine learning to develop an artificial neural network (ANN) model for diagnosing OA, providing new avenues for early diagnosis and treatment.MethodsFrom the Gene Expression Omnibus (GEO) database, we first obtained OA synovial tissue microarray datasets. Differentially expressed genes (DEGs) associated with OA were identified through utilization of the Limma package and weighted gene co-expression network analysis (WGCNA). Subsequently, protein-protein interaction (PPI) network analysis and machine learning were employed to identify the most relevant potential feature genes of OA, and ANN diagnostic model and receiver operating characteristic (ROC) curve were constructed to evaluate the diagnostic performance of the model. In addition, the expression levels of the feature genes were verified using real-time quantitative polymerase chain reaction (qRT-PCR). Finally, immune cell infiltration analysis was performed using CIBERSORT algorithm to explore the correlation between feature genes and immune cells.ResultsThe Limma package and WGCNA identified a total of 72 DEGs related to OA, of which 12 were up-regulated and 60 were down-regulated. Then, the PPI network analysis identified 21 hub genes, and three machine learning algorithms finally screened four feature genes (BTG2, CALML4, DUSP5, and GADD45B). The ANN diagnostic model was constructed based on these four feature genes. The AUC of the training set was 0.942, and the AUC of the validation set was 0.850. In addition, the qRT-PCR validation results demonstrated a significant downregulation of BTG2, DUSP5, and GADD45 mRNA expression levels in OA samples compared to normal samples, while CALML4 mRNA expression level exhibited an upregulation. Immune cell infiltration analysis revealed B cells memory, T cells gamma delta, B cells naive, Plasma cells, T cells CD4 memory resting, and NK cells The abnormal infiltration of activated cells may be related to the progression of OA.ConclusionsBTG2, CALML4, DUSP5, and GADD45B were identified as potential feature genes for OA, and an ANN diagnostic model with good diagnostic performance was developed, providing a new perspective for the early diagnosis and personalized treatment of OA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.