Abstract

Endocrine disrupting compounds (EDCs) in the aquatic systems are of growing concerns that could undermine drinking water safety. In this study, manganese (III) oxide (Mn2O3) based catalytic ceramic membrane (CCM) was developed for the activation of peroxymonosulfate (PMS), and its applicability has been tested in degrading the ten different EDCs (including bisphenol analogs (BPs)) in drinking water. The CCMs were synthesized at different calcination temperatures i.e., 850, 950, and 1150 °C. Optimal performance of CCMs/PMS was achieved at a higher degree of calcination. The CCMs/PMS has shown a potential to effectively degrade the EDCs at higher concentrations (mg/L) to trace levels (ng/L). The CCMs/PMS system adopted a non-radical pathway of degrading the EDCs through the extensive generation of singlet oxygen (1O2), as confirmed using quenching experiments and electron paramagnetic resonance (EPR) spectroscopy. 1O2-based oxidation process showed special selectivity for the decontamination of phenols and bisphenols. The long-term performance of CCMs/PMS showed good stability in degradation of the EDCs in drinking water, also with efficient mineralization (TOC removal >55%) and negligible release of Mn (0.004 wt%Mn/min). CCMs/PMS system also showed high potential in improving water quality by reducing the disinfection byproducts (DBPs) formation potential, highest recorded for bromodichloromethane (CHCl2Br, 100%) and lowest for dichloroacetic acids (TCAA, ∼50%). The study provided a highly efficient catalytic ceramic membrane based advanced oxidation process (AOPs) for effective degradation multiple of EDCs in drinking water, and the findings of this work can be a baseline for full-scale water treatment applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call