Abstract

The paper considers the main principles that are used to develop the flow paths (FP) of the high-pressure cylinders (HPC), intermediate-pressure cylinders (IPC), and low-pressure cylinders (LPC) for the K-1250-6.9/25 turbine unit. It describes approaches to the numerical experiment when designing flow paths, the advantage of which is lower labor, time and financial costs and higher informativeness compared to the physical experiment on flow paths. When designing the flow paths of high- and intermediate-pressure cylinders (HIPC), the numerical experiment is performed using the three-dimensional viscous-flow method. For this purpose, a three-dimensional model of the blade system in the flow path is built, which consists of a large number of finite volumes (elements) in the shape of hexagons, in each of which the integration of the equations of gas dynamics is performed. When developing LPC, the method of parameterization and analytical profiling of the blade crown sections is used, where the profiles are described by the curves of the fourth and fifth orders with the condition of providing the minimum value of the maximum curvature and monotonicity of variation of the three-dimensional blade geometry along height. This method allows obtaining the optimal profiles of the cross sections of the blades, which correspond to the current flow lines to the fullest extent, and minimizing the profile energy losses when the flow flows around the blades.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call