Abstract

Breast cancer (BC) is the most common cause of cancer-related deaths in women globally. Currently, many machine learning (ML)-based predictive models have been established to assist clinicians in decision making for the prediction of BC. However, preventing risk factor formation even with having healthy lifestyle behaviors or preventing disease at early stages can significantly lead to optimal population-wide BC health. Thus, we aimed to develop a prediction model by using a genetic algorithm (GA) incorporating several ML algorithms for the prediction and early warning of BC. The data of 3168 healthy individuals and 1742 patient case records in the BC Registry Database in Ayatollah Taleghani hospital, Abadan, Iran were analyzed. First, a modified hybrid GA was used to perform feature selection and optimization of selected features. Then, with the use of selected features, several ML algorithms were trained to predict BC. Afterward, the performance of each model was measured in terms of accuracy, precision, sensitivity, specificity, and receiver operating characteristic (ROC) curve metrics. Finally, a clinical decision support system based on the best model was developed. After performing feature selection, age, consumption of dairy products, BC family history, breast biopsy, chest X-ray, hormone therapy, alcohol consumption, being overweight, having children, and education statuses were selected as the most important features for prediction of BC. The experimental results showed that the decision tree yielded a superior performance than other ML models, with values of 99.3%, 99.5%, 98.26% for accuracy, specificity, and sensitivity, respectively. The developed predictive system can accurately identify persons who are at elevated risk for BC and can be used as an essential clinical screening tool for the early prevention of BC and serve as an important tool for developing preventive health strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.