Abstract

Sources of streaming data are proliferating and so are the demands to analyze and mine such data in real time. Statistical methods frequently form the core of real-time analysis, and therefore, statisticians increasingly encounter the challenges and implicit requirements of real-time systems. This work recommends a comprehensive strategy for development and implementation of streaming algorithms, beginning with exploratory data analysis in a flexible computing environment, leading to specification of a computational algorithm for the streaming setting and its initial implementation, and culminating in successive improvements to computational efficiency and throughput. This sequential development relies on a collaboration between statisticians, domain scientists, and the computer engineers developing the real-time system. This article illustrates the process in the context of a radio astronomy challenge to mitigate adverse impacts of radio frequency interference (noise) in searches for high-energy impulses from distant sources. The radio astronomy application motivates discussion of system design, code optimization, and the use of hardware accelerators such as graphics processing units, field-programmable gate arrays, and IBM Cell processors. Supplementary materials, available online, detail the computing systems typically used for streaming systems with real-time constraints and the process of optimizing code for high efficiency and throughput.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.