Abstract

BackgroundEffective standardisation of methodologies to analyse the microbiome is essential to the entire microbiome community. Despite the microbiome field being established for over a decade, there are no accredited or certified reference materials available to the wider community. In this study, we describe the development of the first reference reagents produced by the National Institute for Biological Standards and Control (NIBSC) for microbiome analysis by next-generation sequencing. These can act as global working standards and will be evaluated as candidate World Health Organization International Reference Reagents.ResultsWe developed the NIBSC DNA reference reagents Gut-Mix-RR and Gut-HiLo-RR and a four-measure framework for evaluation of bioinformatics tool and pipeline bias. Using these reagents and reporting system, we performed an independent evaluation of a variety of bioinformatics tools by analysing shotgun sequencing and 16S rRNA sequencing data generated from the Gut-Mix-RR and Gut-HiLo-RR. We demonstrate that key measures of microbiome health, such as diversity estimates, are largely inflated by the majority of bioinformatics tools. Across all tested tools, biases were present, with a clear trade-off occurring between sensitivity and the relative abundance of false positives in the final dataset. Using commercially available mock communities, we investigated how the composition of reference reagents may impact benchmarking studies. Reporting measures consistently changed when the same bioinformatics tools were used on different community compositions. This was influenced by both community complexity and taxonomy of species present. Both NIBSC reference reagents, which consisted of gut commensal species, proved to be the most challenging for the majority of bioinformatics tools tested. Going forward, we recommend the field uses site-specific reagents of a high complexity to ensure pipeline benchmarking is fit for purpose.ConclusionsIf a consensus of acceptable levels of error can be agreed on, widespread adoption of these reference reagents will standardise downstream gut microbiome analyses. We propose to do this through a large open-invite collaborative study for multiple laboratories in 2020.93HHEig7BSVpjCFc6M9PenVideo

Highlights

  • Effective standardisation of methodologies to analyse the microbiome is essential to the entire microbiome community

  • Development of reference reagents and a reporting system It is envisaged that at least three types of reference reagent will be required for effective standardisation of microbiome protocols: DNA reagents to control for biases in library preparation, sequencing, and bioinformatics pipelines; whole-cell reagents to control for biases in DNA extraction; and matrix-spiked whole-cell reagents to control for biases from inhibitors or storage conditions

  • Establishing reference reagents for the analysis of the microbiome requires the construction of reagents of known composition (‘ground truth’) which can be used to evaluate the accuracy of the predicted taxonomic composition given by pipelines used for microbiome analysis

Read more

Summary

Introduction

Effective standardisation of methodologies to analyse the microbiome is essential to the entire microbiome community. We describe the development of the first reference reagents produced by the National Institute for Biological Standards and Control (NIBSC) for microbiome analysis by next-generation sequencing. These can act as global working standards and will be evaluated as candidate World Health Organization International Reference Reagents. The creation of global standards for the microbiome field has the potential to improve method development, prevent erroneous results being reported, and allow for effective commutability of results globally These improvements will be essential for effective translation of research to clinical application. Standards can open up innovation in the field, as they negate the requirement for everyone to use the same protocol as long as users validate their protocol with respect to the global standard [11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call