Abstract
A substantial percentage of engineering graduates, especially those from traditionally underrepresented groups, complete their lower-division education at a community college before transferring to a university to earn their degree. However, engineering programs at many community colleges, because of their relatively small scale with often only one permanent faculty member, struggle to offer lower-division engineering courses with the breadth and frequency needed by students for effective and efficient transfer preparation. As a result, engineering education becomes impractical and at times inaccessible for many community college students. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium sized community college engineering programs to support a comprehensive set of lower-division engineering courses. These resources were developed for use in a variety of delivery formats (e.g., fully online, online/hybrid, flipped face-to-face, etc.), providing flexibility for local community colleges to leverage according to their individual needs. This paper focuses on the development and testing of the resources for an introductory Materials Science course with 3-unit lecture and 1-unit laboratory components. Although most of the course resources were developed to allow online delivery if desired, the laboratory curriculum was designed to require some limited face-to-face interaction with traditional materials testing equipment. In addition to the resources themselves, the paper presents the results of the pilot implementation of the course during the Spring 2015 semester, taught using a flipped delivery format consisting of asynchronous remote viewing of lecture videos and face-to-face student-centered problem-solving and lab exercises. These same resources were then implemented in a flipped format by an instructor who had never previously taught the course, at a community college that did not have its own materials laboratory facilities. Site visits were arranged with a nearby community college to afford students an opportunity to complete certain lab activities using traditional materials testing equipment. In both implementations of the course, student surveys and interviews were used to determine students’ perceptions of the effectiveness of the course resources, student use of these resources, and overall satisfaction with the course. Additionally, student performance on assessments was compared with that of traditional lecture delivery of the courses in prior years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.