Abstract

This paper outlines the development of an active hydraulic bushing system for the Multi Displacement System (MDS) Engine isolation problems. The prior art research effort on engine mounts and bushings has so far focused on the improvement of the mount dynamic stiffness properties. The optimum dynamic stiffness and damping of the engine bushings is both frequency and amplitude dependent. While these systems are available commercially, they have many limitations, particularly for new vehicle models and new engine generations such as MDS engines. A suitable isolator for an MDS engine should be half as stiff in the operating frequency range of the engine (5-70 Hz) in MDS mode, while showing the same performance as conventional hydraulic bushings in normal engine operations. Passive hydraulic bushings are not capable of meeting the isolation requirements discussed for the MDS engines because they are not adjustable. There are different parameters which contribute to the dynamic stiffness response of a hydraulic bushing. Some of those parameters are defined by passive components such as rubber stiffness and damping. However, other parameters such as the pressure inside the bushing can be altered actively. The mathematical model of a conventional hydraulic bushing is given in this paper. The model suggests that the pressure inside the bushing has a significant role in the dynamic stiffness response of the bushing. As a result, an additional pumping chamber is introduced as a solution. The pump is utilized to adjust the pressure inside the bushing based on the engine excitation frequency. This pump can be driven by proper actuators which can produce pressure differences in the frequency range of interest. The mechanical and mathematical model of such a system is derived using a simplified linear model. This technique enables the engine mount to adjust to the dynamic stiffness characteristics by applying a feedback signal to the actuator. The feedback signal to the actuator is also obtained using the mathematical model for many required cases yet adjustable for others. The response of the system is discussed in frequency domains. The simulation results prove that the additional pumping chamber can effectively be used to control the stiffness of the conventional hydraulic bushings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.