Abstract

Accurately quantifying the mass (water, nutrients, and carbon) and energy exchange processes between the Earth’s atmosphere, biosphere, and lithosphere requires the accurate parameterization of soil hydraulic properties (SHPs) and their spatial heterogeneity. Because direct measurements of SHPs are difficult, time-consuming, and impossible at larger spatial scales, various pedotransfer functions (PTFs) have been developed in the last few decades, providing divergent estimates of SHPs from readily measurable variables. However, existing PTFs are mostly developed for specific regions and may not be suitable for other pedoclimatic conditions. Here, PTFs were developed using multiple machine-learning algorithms to estimate SHPs and examined the weaknesses and strengths of each method in estimating the average and variability of SHPs across China’s arid region. The optimal PTFs were applied to a 1 × 1 km2 regional map of texture and bulk density, thus producing maps of the saturated hydraulic conductivity (Ks), the parameters of the van Genuchten (VG) formulation, field capacity (θfc), wilting point (θwp), plant available water (θpa), and soil macroporosity (ϕm) in the 0–2 m soil profile throughout the region. The results indicate that the ensemble model with the averaging method (EMA) is the most robust for estimating all SHPs. The EMA-PTFs for Ks yielded the best performance for sand textures, followed by sandy loam, loam, silty loam, silty clay loam, loamy sand, and clay loam textures. There were no significant differences in estimating soil water retention curve parameters among the different soil texture classes. Using the same observed data set, we demonstrated that the new EMA-PTFs outperformed those of existing PTFs, such as Rosetta and HYPRES, with RMSE values decreasing by 25–83 % depending on the SHPs. Furthermore, our SHP datasets exhibited significantly deeper soil profiles and higher accuracy than other available regional and global SHP products. The VG retention parameter α shows the greatest variation vertically throughout the 0–2 m soil profile, followed by ln(Ks), θr, θpa, θfc, θwp, ϕm, θs and n. All SHPs exhibit much lower variability in the desert than in other areas, likely due to the homogeneous particle size distribution of desert areas. This study provides more accurate SHP estimates in China’s arid region than the existing SHP products by developing advanced PTFs and highlights the inconsistency in SHPs among different global or regional products; the uncertainties induced by PTFs should thus be considered in future terrestrial biosphere modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.