Abstract

In part 1 of this two-paper series, a local order parameter framework was put forth that could track the changes occurring when block copolymer-like mesophases formed from a disordered state. The framework was developed using a two-particle model and involved identifying the local symmetries and geometric motifs that were unique to a given mesophase. In this paper, this framework is suitably modified to track the mesophase formation of standard coarse-grained bead–spring simulation models of polymers and oligomers. In particular, a mesoscale chain model typically employed with dissipative-particle dynamics is used to study the ordering transition of a linear symmetric diblock copolymer into a lamellar phase, and a more detailed bead–spring model of branched bolaamphiphile molecules is used to track the formation of a single diamond phase. These applications illustrate the robustness of the method in handling molecules with intramolecular degrees of freedom (including multiple chemical blocks and branched ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call