Abstract

Field-programmable analog arrays (FPAAs) provide a method for rapidly prototyping analog systems. While currently available FPAAs vary in architecture and interconnect design, they are often limited in size and flexibility. For FPAAs to be as useful and marketable as modern digital reconfigurable devices, new technologies must be explored to provide area efficient, accurately programmable analog circuitry that can be easily integrated into a larger digital/mixed signal system. By leveraging recent advances in floating gate transistors, a new generation of FPAAs are achievable that will dramatically advance the current state of the art in terms of size, functionality, and flexibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.