Abstract
Two-component signal transduction systems and their expanded variants known as phosphorelays are integral elements of the virulence and antimicrobial resistance responses of a wide range of pathogenic bacteria and fungi and also regulate essential functions. As a consequence, two-component systems and phosphorelays are recognized targets for the development of novel antimicrobial agents and a number of chemically synthesized inhibitors from different chemical classes have been identified by compound library screens. However, in the majority of cases these compounds do not appear to be selective for signal transduction pathways and exert their effect by multiple mechanisms of action. The key to designing molecules to selectively disrupt signal transduction may lie with the conserved features of response regulators and the structural analysis of complexes of signaling proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.