Abstract

Accurate predictions of pKa values of titratable groups require taking into account all relevant processes associated with the ionization/deionization. Frequently, however, the ionization does not involve significant structural changes and the dominating effects are purely electrostatic in origin allowing accurate predictions to be made based on the electrostatic energy difference between ionized and neutral forms alone using a static structure and the subtle structural changes be accounted by using dielectric constant larger than two. On another hand, if the change of the charge state is accompanied by a large structural reorganization of the target protein, then the relevant conformational changes have to be explicitly taken into account in the pKa calculations. Here we report a hybrid approach that first predicts the titratable groups whose ionization is expected to cause large conformational changes, termed "problematic" residues, and then applies a special protocol on them, while the rest of the pK(a)s are predicted with rigid backbone approach as implemented in multi-conformation continuum electrostatics (MCCE) method. The backbone representative conformations for "problematic" groups are generated with either molecular dynamics simulations with charged and uncharged amino acid or with ab-initio local segment modeling. The corresponding ensembles are then used to calculate the titration curves of the "problematic" residues and then the results are averaged to obtain the corresponding pKa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call