Abstract

The weighted technique is introduced in the compact high-order nonlinear schemes (CNS) and three fourth- and fifth-order weighted compact nonlinear schemes (WCNS) are developed in this paper. By Fourier analysis, the dissipative and dispersive features of WCNS are discussed. In view of the modified wave number, the WCNS are equivalent to fifth-order upwind biased explicit schemes in smooth regions and the interpolations at cell-edges dominate the properties of WCNS. Both flux difference splitting and flux vector splitting methods can be applied in WCNS, though they are finite difference schemes. Boundary and near boundary schemes are developed and the asymptotic stability of WCNS is analyzed. Several numerical results are given which show the good performances of WCNS for discontinuity capture high accuracy for boundary layer calculation, and good convergent rate. We also compare WCNS with MUSCL scheme and spectral solutions. WCNS are more accurate than MUSCL, as expected, especially for heat transfer calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call