Abstract

To improve the efficiency of Si-based solar cells beyond their Shockley-Queisser limit, the optimal path is to integrate them with III-V-based solar cells. In this work, we present high performance GaP/Si heterojunction solar cells with a high Si minority-carrier lifetime and high crystal quality of epitaxial GaP layers. It is shown that by applying phosphorus (P)-diffusion layers into the Si substrate and a SiNx layer, the Si minority-carrier lifetime can be well-maintained during the GaP growth in the molecular beam epitaxy (MBE). By controlling the growth conditions, the high crystal quality of GaP was grown on the P-rich Si surface. The film quality is characterized by atomic force microscopy and high-resolution x-ray diffraction. In addition, MoOx was implemented as a hole-selective contact that led to a significant increase in the short-circuit current density. The achieved high device performance of the GaP/Si heterojunction solar cells establishes a path for further enhancement of the performance of Si-based photovoltaic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.