Abstract
Pattern in space and time is central to ecology, and adequately designed ecological sampling is needed to resolve those patterns, pursue ecological questions and design conservation strategies. Recently, there has been an explosion of various ecological data due to the proliferation of online data‐sharing platforms, citizen science programs and new technology such as unmanned aerial vehicles (UAVs), but data reliability, consistency and the error properties of the sampling method are usually uncertain. While there are a number of standard survey protocols for different taxa, they often subjectively designed and standardization is meant to facilitate repeatability rather than produce a quantitative evaluation of the data (e.g. error properties). Here, we describe an ecological survey scheme consisting of an ‘algorithm' to be followed in the field that will result in a standard set of data as well as the error properties of the data. While many such sampling schemes could be developed that target different types of organisms, we focus on one case of a moving observer attempting to detect a species in the field (e.g. a birder, UAV, etc.) with the goal of producing a presence–absence map. The multiscale model developed is spatially explicit and accommodates inherent survey tradeoffs such as sampling speed, detectability and map resolution. Given a set of sampling parameters, the model provides estimates of the total sampling time and map accuracy translated into the probability of false negative. Additionally it also provides an actual and sampled occupancy–area curve across mapping resolutions that can be utilized to discuss sampling effects. While the proposed sampling framework is simple, the same general approach could be adapted for other conditions to meet the needs of a particular taxon. If a set of ‘canonical' sampling algorithms could be developed with known mathematical properties, it would enhance reliability and usage of ecological datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.