Abstract

Plasma-sprayed yttria-stabilized zirconia (YSZ) coating has been considered to be a good protective coating material for high-temperature applications on account of its superior properties and life cycle costs. However, thermal barrier coatings (TBCs) have engineering reliability problems in tailoring the microstructure and mechanical properties towards achieving both prime reliance and manufacturing reproducibility. In this work, empirical relationships were developed to estimate TBCs performance characteristics (porosity and microhardness) by incorporating independently controllable atmospheric plasma spray operational parameters (input power, standoff distance and powder feed rate) using the response surface methodology (RSM). A central composite rotatable design with three factors and five levels was chosen to minimize the number of experimental conditions. Within the scope of the design space, the input power and the standoff distance appeared to be the most significant two parameters affecting the coating quality characteristics among the three investigated process parameters. Further, correlating the spray parameters with coating properties enables the identification of characteristics regime to achieve desired quality of YSZ coatings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.