Abstract

Because scour is one of the main reasons for bridge failure, this study focuses on accurately predicting the maximum scour depth around different vertical and inclined piers. Scouring is an issue of concern in the bridge design process, as most existing equations for predicting local scour near bridge piers suffer from over- or underprediction issues, resulting in higher foundation costs or bridge failure and inaccurate predictions of the scour around piers. The dimensionless maximum scour depths (ys/D) of vertical and inclined piers were investigated for seven pier shapes with different L/D ratios and four inclination angles (θ) under shallow flow conditions. The inclined pier configuration reduced the ys/D of the piers. The maximum ys/D was observed for a rectangular pier with an L/D of 4.5 in both vertical and inclined configurations (θ of 10, 15 and 21°, respectively). The ys/D was significantly decreased by increasing the angle of the pier from 10 to 30°. The ys/D of the inclined rectangular piers decreased as θ decreased from 30 to 10° and the L/D ratio increased from 1 to 4.5. The best ys/D results were obtained for inclined rectangular piers at a θ value of 30° and an L/D ratio of 7.5 compared to other shapes and inclination angles. New equations were developed to predict the local scour depth for circular, square and rectangular bridge piers. The equations yielded excellent results for predicting the maximum clear water scour depth around vertical and inclined piers with inclination angles of 10, 15, 21 and 30°, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call