Abstract

In this study, emulsified oil droplets were employed as a temporary porogen to obtain dual nano/macroporous starch aerogels by supercritical carbon dioxide (SC-CO2) drying. This method took advantage of the solubility of the oil droplet porogens in acetone, and the insolubility of corn starch in this solvent, so this process could be integrated into the typical aerogel processing method. The effect of porogen content and starch concentration on physical and mechanical properties and the internal morphology of the obtained aerogels were studied. While the neat starch aerogel showed a compact structure in macroscale size with interconnected nanopores, the sacrificing oil droplet porogens induced macropores in the emulsion-templated aerogels. Furthermore, the nanoporous structures of starch aerogels were also well-preserved in which the macropores were surrounded by fine and interconnected nanofibrous networks. It resulted in aerogels that exhibited internal morphology in two scales (macropores and nanopores) with a high surface area (156–190 m2/g).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call