Abstract

Computational thinking describes key principles from computer science that are broadly generalizable. Robotics programs can be engaging learning environments for acquiring core computational thinking competencies. However, few empirical studies evaluate the effectiveness of a robotics programming curriculum for developing computational thinking knowledge and skills. This study measures pre/post gains with new computational thinking assessments given to middle school students who participated in a virtual robotics programming curriculum. Overall, participation in the virtual robotics curriculum was related to significant gains in pre- to posttest scores, with larger gains for students who made further progress through the curriculum. The success of this intervention suggests that participation in a scaffolded programming curriculum, within the context of virtual robotics, supports the development of generalizable computational thinking knowledge and skills that are associated with increased problem-solving performance on nonrobotics computing tasks. Furthermore, the particular units that students engage in may determine their level of growth in these competencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call