Abstract

AbstractReactive magnesia cement (RMC) is an emerging green cement as it can sequestrate substantial CO2 to harden itself. However, the penetration of CO2 in RMC from outside to inside causes a change in microstructure with depth, which influences the fiber/matrix interface bond and fiber-bridging capacity. This work firstly investigated the influence of carbonation degree on interface bond by single fiber pull-out, SEM, FTIR and acid digestion tests, the results demonstrated that the interface bond is positively correlated to the carbonation degree, but high carbonation degree may induce the fiber rupture. Secondly, tensile test was conducted to explore the influence of carbonation degree on tensile performance, the results suggested increase in carbonation degree can significantly improve the tensile performance, and replacing partial PVA fiber with sisal fiber can prominently enhance the tensile performance at early stage. This work is the first time to clarify the relationship between carbonation degree, fiber/matrix interface bond and tensile performance of RMC, which may provide some guidance to the mix design and application of SHMC.KeywordsReactive magnesia cementCarbonation degreeFiber/matrix interface bondHollow natural fiber

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.