Abstract

Chorus waves play an important role in the dynamic evolution of energetic electrons in the Earth’s radiation belts and ring current. Due to the orbit limitation of Van Allen Probes, our previous chorus wave model developed using Van Allen Probe data is limited to low latitude. In this study, we extend the chorus wave model to higher latitudes by combining measurements from the Van Allen Probes and Arase satellite. As a first step, we intercalibrate chorus wave measurements by comparing statistical features of chorus wave observations from Van Allen Probes and Arase missions. We first investigate the measurements in the same latitude range during the two years of overlap between the Van Allen Probe data and the Arase data. We find that the statistical intensity of chorus waves from Van Allen Probes is stronger than those from Arase observations. After the inter-calibration, we combine the chorus wave measurements from the two satellite missions and develop an analytical chorus wave model which covers all magnetic local time and extends to higher latitudes. This chorus wave model will be further used in radiation belt and ring current simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call